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Abstract. The problem of a strong converging spherical (or cylindrical) shock collapsing at the centre (or axis)
of symmetry is extended to take into account the inhomogeneity of a gaseous medium, the density of which is
decreasing towards the centre (or axis) according to a power law. The perturbative approach used in this paper
provides a global solution to the implosion problem yielding accurately the results of Guderley’s similarity solu-
tion, which is valid only in the vicinity of the center/axis of implosion. The analysis yields refined values of the
leading similarity parameter along with higher-order terms in Guderley’s asymptotic solution near the center/axis
of convergence. Computations of the flow field and shock trajectory in the region extending from the piston to
the center/axis of collapse have been performed for different values of the adiabatic coefficient and the ambient
density exponent.
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1. Introduction

Converging shock waves have been a field of continuing research interest over the years as
possible methods for generating high-pressure, high-temperature plasmas at the centre of con-
vergence, as well as to understand the basic fluid dynamics involved in the process. The col-
lapse of an imploding shock wave, which is a remarkable example of a self-similar solution of
the second kind, was first analysed by Guderley [1]. Among the extensive work that followed,
we mention the contributions by Lazarus and Richtmeyer [2], Van Dyke and Guttmann [3],
Hafner [4] and Sakurai [5, 6] who presented high-accuracy results and alternative approaches
for the investigation of the implosion problem under consideration.

The present paper demonstrates a successful application of the perturbation-series tech-
nique proposed by Van Dyke and Guttmann [3] which provides a global solution to the
implosion problem in contrast to Guderley’s asymptotic solution that holds only in the vicin-
ity of the center/axis of implosion. We consider a converging shock wave in a non-uniform
medium of decreasing density contained in a planar, cylindrical or spherical piston which
starts contracting with a velocity greater than the acoustic speed of the medium generating
a strong shock inside. Here we study the situation in which a strong converging shock wave
propagates through a non-uniform medium of decreasing density and eventually reaches the
center/axis where the density vanishes [5]. Such a problem is of great interest in astrophysics
as it is highly relevant to the problem of the origin of cosmic rays (see [4–7]). It is well
known that near the surface of a star, the density decreases to zero approximately according
to a power law ρ = ρcX

δ , where X is the distance measured from the surface (see [4], [7],
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[8, Chapter 15]); this density distribution is a result of the combined action of gravity and
thermal pressure. In terrestrial problems, such situations may arise for shock waves moving in
plasmas sustained by magnetic pressure [7]. The phenomenon is also related in many ways to
the shallow-water theory of bores moving up a sloping beach (see [9]).

Our paper is concernd with the investigation of the non-self-similar problem of a strong
converging shock wave propagating through a medium with variable density whose distribu-
tion is subject to a power law. In addition to the power law behaviour, it is also possible for the
gaseous medium to have an exponential density distribution, but in the majority of problems
of practical interest, the initial spatial distribution of density is governed by a power-law
behaviour ([7, Chapter 12 Section 11], [9, Chapter 5]). We compute the flow field at the rear
of the shock wave as it approaches the center/axis of convergence. Computations have been
performed for various values of the adiabatic coefficient and the ambient density exponent,
and the results are compared with those obtained by using alternative methods.

2. Solution expanded in powers of time

We consider a plane, cylindrical or spherical piston of initial radius R0 that bounds an ideal
gas, the density of which varies initially according to a power law. Let the initial (undisturbed)
condition be given by

p = p0, ρ = ρc(r/R0)
δ, v = 0;

where r, p, ρ, v are the distance of the particle from the center/axis of symmetry, the pres-
sure, density and the outward radial velocity, respectively, and ρc, p0 and δ are appropriate
positive constants.

At time t = 0, the piston starts contracting with a constant velocity V , where V is
larger than the acoustic speed of the medium; this generates a strong shock wave of pla-
nar, cylindrical or spherical geometry whose position has to be determined. The equations of
one-dimensional adiabatic motion of an ideal gas have the form:

∂ρ

∂t
+ ∂(ρv)

∂r
+ (jρv)

r
= 0, (1)

∂v

∂t
+ v

∂v

∂r
+

(
1

ρ

)
∂p

∂r
= 0, (2)

(
∂
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+ v

∂

∂r

)
p

ργ
= 0, (3)

where t is the time, γ is the adiabatic coefficient; j takes values 0, 1 or 2 according to whether
the piston is plane, cylindrical or spherical, respectively. In the limit of infinite shock Mach
number the boundary conditions immediately behind the shock wave, r = R(t), are given by
the Rankine–Hugoniot relations:

v = 2

γ + 1
Ṙ, ρ = γ + 1

γ − 1
ρ0, p = 2

γ + 1
ρ0(Ṙ)2. (4)

Here v is the gas velocity relative to the fixed coordinates in which the gas is at rest in a
container with radius R0 and ρ0 is the undisturbed density of the fluid. The condition of no
flow through the piston yields v = −V at r = R0 − V t . For convenience, we measure the
distance inward; let x = R0−r and let u = −v be the corresponding velocity directed inward.
We introduce the variable
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y = 2

γ − 1

( x

V t
− 1

)
, (5)

that varies from zero at the piston to unity at the basic position of the shock wave and non-
dimensionalize the variables by referring lengths to R0, speed to V , density to ρc, pressure to
ρcV

2 and time to R0/V . Let the shock front be at a distance X, measured inward from the
initial piston location, i.e., X = R0 −R. Thus, the boundary conditions at the shock and piston
are, respectively:

u = 2

γ + 1
Ẋ, ρ = γ + 1

γ − 1
(1 − X)δ, p = 2

γ + 1
(1 − X)δẊ2 (6)

at

y = 2

(γ − 1)

(
X(t)

t
− 1

)
,

and

u = 1 at y = 0. (7)

Assuming the solution to be analytic in time, we expand the unknown position of the shock
wave in a Taylor series in the form:

X(t) =
∞∑

n=1

Xnt
n, (8)

and likewise expand the flow variables in the form:

u =
∞∑

n=1

Un(y)tn−1, ρ =
∞∑

n=1

Rn(y)tn−1, p =
∞∑

n=1

Pn(y)tn−1. (9)

Transforming the basic Equations (1)–(3) in the y, t coordinate system and then using the
boundary conditions (6) and (7) and the expansions (8) and (9), we find, on equating the
coefficients of like powers of t , that the coefficients U1, R1 and P1 for the first approximation
remain uninfluenced by the density variations, i.e.,

U1 = 1, R1 = γ + 1

γ − 1
, P1 = γ + 1

2
, X1 = γ + 1

2
, (10)

whilst the coefficients U2, R2 and P2 for the second approximation which exhibit δ-dependence
satisfy the following first-order linear ordinary differential equations and boundary conditions,

γ + 1

γ − 1
U ′

2 − (γ − 1)yR′
2

2
+ (γ − 1)R2

2
= j (γ + 1)

2
, (11)

(γ + 1)yU ′
2

2
− (γ + 1)U2

2
− P ′

2 = 0, (12)

y

[
γ + 1

γ − 1
P ′

2 − γ (γ + 1)

2
R′

2

]
− γ + 1

γ − 1
P2 + γ (γ + 1)

2
R2 = 0, (13)

U2(1) = 4X2

γ + 1
, P2(1) = 4X2 − δ(γ + 1)2

4
, R2(1) = −δ(γ + 1)2

2(γ − 1)
. (14)
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Here a prime denotes derivative with respect to y. Eliminating P2 from (12) and (13) we have
an equation in U2 and R2. This together with (11) and the boundary conditions (7) and (14)
can be solved to yield U2 and hence P2 and R2. Thus, the second-order approximation is as
follows:

U2 = y

2

(γ − 1)

(2γ − 1)

(
jγ + δ

γ + 1

2

)
, (15)

R2 = γ + 1

2γ − 1

[(
j − δ

2

(γ + 1)

(γ − 1)
) − y(j + δ(γ + 1)

)]
, (16)

P2 = γ (γ + 1)

2(2γ − 1)

[
j (γ − 1) − δ(γ + 1)

2

]
, (17)

X2 = (γ + 1)(γ − 1)

8(2γ − 1)

[
jγ + δ

(γ + 1)

2

]
. (18)

Equations (15)–(18) suggest that the coefficients Un, Rn and Pn are polynomials in y of the
form:

Un(y) =
n∑

k=2

Unky
k−1, Rn(y) =

n∑
k=1

Rnky
k−1, Pn(y) =

n∑
k=1

Pnky
k−1. (19)

Substituting these in the transformed form of the basic differential Equations (1)–(3) in the
(y, t) plane and the shock conditions (6), we have for the nth approximation a system of 3n

linear algebraic equations in the coefficients Unk, Rnk, Pnk and Xn. For the third-order approx-
imation, we have the following system of ordinary differential equations and the associated
boundary conditions,

γ + 1

γ − 1
U3

′ − (γ − 1)y

2
R′

3 + (γ − 1)R3 + Ay + B = 0,

P ′
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2
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3 + (γ + 1)U3 + Cy = 0,

(γ + 1)y

2
P ′

3−(γ + 1)P3− γ (γ − 1)(γ + 1)

4
yR′

3+
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2
R3−A1y−B1 =0,

U3(1) = 6X3

γ + 1
− γ 2 − 1

8(2γ − 1)2
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2
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8
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where

A=−(γ + 1)(γ − 1)

4(2γ − 1)2

[
j 2(2γ 2−γ + 2)+j

(
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2
+ (2γ − 1)2

)
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[
−j 2(γ − 1) + j

(
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)
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4
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]
,
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4(2γ − 1)2

(
jγ + δ

γ + 1

2

)2

,

A1 = γ (γ − 1)(γ + 1)2

4(2γ − 1)2
(j + δ(γ + 1))2,

B1 = −γ (γ − 1)3(γ + 1)2

4(2γ − 1)2

(
j − δ

2

(γ + 1)

(γ − 1)

)2

.

The solution of the above system yields the position of the shock wave up to the third-order
approximation as

X(t) = (γ + 1)t

2
+ (γ + 1)(γ − 1)

8(2γ − 1)

[
jγ + δ

(γ + 1)

2

]
t2

+ (γ − 1)(γ + 1)

48(7γ − 5)
[j 2 γ (13γ 3 − 21γ 2 + 13γ − 1)

(2γ − 1)2

+ j (γ + 1)(3γ + 1) + j
δ(γ + 1)(28γ 3 − 43γ 2 + 26γ − 1)

2(2γ − 1)2

+ δ2(γ + 1)2(47γ 2 − 54γ + 19)

4(2γ − 1)2
− 4δ(δ − 1)(γ + 1)2]t3 + O(t4).

In the absence of density stratification (δ = 0), the above result reduces to the one obtained by
Van Dyke and Guttmann [3] for a uniform-density fluid. As the hand calculations become very
tedious after the third approximation, we compute the succeeding terms of the series solution
for the shock position with the help of a computer program.

3. Computer-extended series

We have written a program using the software package Mathematica. The program has two
parts. In the first part, we generated a system of algebraic equations using (9) and (19). In the
second part, these equations are solved to give the values of Unk, Rnk and Pnk and Xn. We
have done the entire calculation using rational arithmetic for plane, cylindrical and spherical
geometries with adiabatic coefficient γ = 7/5 and 5/3 and with density exponent δ = 1 and
2. Table 1 lists the first forty-one coefficients in the series expansion for the shock location for
γ = 5/3 and δ = 2 for plane (j = 0), cylindrical (j = 1) and spherical (j = 2) symmetry.
Although we have shown the coefficients rounded to 12 significant digits, we have carried out
all the subsequent calculations using 32 significant digits. This reduces the effect of round-off
errors and truncation errors to a great extent.
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Table 1. Coefficients Xn in the expansion (8) for the radius of the shock wave position when γ = 5/3
and δ = 2.

n Planar Cylindrical Spherical

1 1·333333333333 1·333333333333 1·333333333333

2 0·253968253968 0·412698412698 0·571428571429

3 0·274124464601 0·535147392290 0·872763920383

4 0·299463700824 0·676712777998 1·259449890087

5 0·354952943572 0·950192741054 2·054352043110

6 0·460141586279 1·474158698972 3·711153927337

7 0·636322437666 2·413162851141 6·989421070721

8 0·916953105025 4·082594041918 13·56417933179

9 1·359823836778 7·095656513587 27·06229357367

10 2·062810898079 12·60752886369 55·12392665063

11 3·188121061213 22·79258651799 114·0679337561

12 5·003399686395 41·78636222250 239·1994508056

13 7·952444403837 77·51410005438 507·2856774155

14 12·77551498173 145·2368139327 1086·060369030

15 20·71294720773 274·4736210016 2344·085751087

16 33·85060541023 522·5817368999 5095·195640129

17 55·70844949638 1001·471720138 11143·92982915

18 92·24640843343 1930·301295556 24506·95733389

19 153·5873046382 3739·705420168 54156·83804849

20 256·9741833924 7278·514448997 120201·8071397

21 431·8571286486 14224·71060024 267839·5857984

22 728·6605963921 27904·21533474 598940·1468991

23 1233·922695953 54925·63786969 1·343686439900 × 106

24 2096·483451574 108450·5052810 3·023410959663 × 106

25 3572·861090717 214747·1354689 6·821423033776 × 106

26 6105·998998068 426347·7787154 1·542900151460 × 107

27 10462·12825770 848504·6874548 3·497863948749 × 107

28 17968·97065493 1·692468245463 × 106 7·946878824199 × 107

29 30930·87426125 3·382934178896 × 106 1·809060199772 × 108

30 53353·22188845 6·775028511990 × 106 4·125847110127 × 108

31 92208·04330716 1·359306134277 × 107 9·425919459996 × 108

32 159647·7014035 2·731878605689 × 107 2·156933293360 × 109

33 276881·0908831 5·499175864376 × 107 4·943203513062 × 109

34 480967·9980374 1·108623762300 × 108 1·134486642876 × 1010

35 836740·3824990 2·238118390354 × 108 2·607193190253 × 1010

36 1·457739161644 × 106 4·524383502613 × 108 5·999248662023 × 1010

37 2·543017916727 × 106 9·157592571039 × 108 1·382101615324 × 1011

38 4·441894526034 × 106 1·855749817738 × 109 3·187679369510 × 1011

39 7·767968684102 × 106 3·764841465896 × 109 7·359954192203 × 1011

40 1·360004931043 × 107 7·646067796961 × 109 1·701052266506 × 1012

41 2·383651026655 × 107 1·554428223524 × 1010 3·935322135061 × 1012
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The computed results in the neighbourhood of collapse are in agreement with the exact
numerical results (see Table 7). In what follows next, similar tables for other values of j , γ

and δ have not been given for brevity.

4. Refinement of the radius of convergence

The coefficients of first 41 terms in the expansion (8) for the radius of the shock wave indicate
that the radius of convergence of the series is less than unity. At the instant t = 1 the piston
itself would reach the axis and the power-series solution breaks down. We shall investigate
whether this singularity corresponds to Guderley’s singularity. Assuming that the shock wave
admits Guderley’s similarity solution near the point of its collapse, we find that the shock
position is given by

R(t) = 1 − X(t) = 1 −
∑

Xnt
n ∼ A1

(
1 − t

tc

)α1

as t → tc. (20)

Thus,

Xn

Xn−1
∼ 1

tc

(
1 − 1 + α1

n

)
as n → ∞,

where tc represents the time taken by the shock to collapse. We assume that, when n is large,
the ratio Xn/Xn−1 approximates the value of 1/tc. Under this assumption we construct a
sequence Xn/Xn−1 (n = 32, 33, . . . , 41) and thereafter refine this estimate of 1/tc by forming
a Neville Table in the usual manner. Given a sequence e0

n, we can construct a triangular array
of elements er

n, where n labels the rows and r = 0, 1, 2, 3, . . . , n labels the columns. The
elements of the rth column are generated from the (r − 1)th column by using the form [10]:

er
n = ner−1

n − (n − r)er−1
n−1

r
. (21)

Here r = 1 corresponds to linear intercepts, r = 2 to quadratic intercepts, r = 3 to the cubic
intercepts, and so on. The Neville table so formed provides a refined estimate for e0

n. In order to
construct a Neville table for 1/tc, we compute the sequence Xn/Xn−1 (n = 32, 33, . . . , 41)

and take this as the initial sequence e0
n; this comprises the first column of Table 2. Then using

(21), we compute the sequence e1
n (n = 33, 34, . . . , 41) and this gives the second column

of Table 2. Likewise, all successive columns of the Neville table are formed, which show that
the sequences e0

n, e
1
n, e

2
n, . . . approach a limiting value 1/tc.

From Tables 2 and 3 the values of 1/tc and α1 for a cylindrical piston with γ = 5/3 and
δ = 2 are 2·115512 and 0·5994, respectively. Though the estimate for 1/tc is reasonably
good, we can refine the results as follows. As observed earlier, the radius of convergence of
the series solution is less than unity. At the instant, X(t) = 1, the series solution breaks down
and the shock wave collapses. Hence the real root of the equation X(t) = ∑N

1 Xnt
n = 1

gives a rough estimate of tc, which has been evaluated with the help of Mathematica for
N = 32, 33, 34, . . . , 41. Constructing a Neville table with these roots as the initial sequence
e0
n, we find that the successive sequences yield a more accurate value of tc as compared to the

one obtained from Table 2. The value of tc obtained from Table 4 for j = 1, γ = 5/3, and
δ = 2 is 0·47269876; values of tc for different values of γ, j and δ are given in Table 5.



62 G. Madhumita and V.D. Sharma

Table 2. The Neville table for estimating the reciprocal of the radius of
convergence 1/tc for j = 1, γ = 5/3 and δ = 2.

n e0
n Linear Quadratic Cubic Quartic

37 2·02405313 2·11552852 2·11550581 2·11551263 2·11551451

38 2·02646034 2·11552736 2·11550633 2·11551238 2·11551027

39 2·02874408 2·11552630 2·11550678 2·11551228 2·11551136

40 2·03091362 2·11552535 2·11550720 2·11551232 2·11551272

41 2·03297730 2·11552448 2·11550757 2·11551233 2·11551238

Table 3. The Neville table for the similariry exponent α1 for j = 1, γ = 5/3
and δ = 2.

n e0
n Linear Quadratic Cubic Quartic

37 0·599602528 0·599321334 0·599423795 0·599413701 0·599374529

38 0·599595269 0·599326699 0·599423256 0·599416969 0·599444747

39 0·599588509 0·599331630 0·599422865 0·599418174 0·599428715

40 0·599582201 0·599336169 0·599422411 0·599416808 0·599404520

41 0·599576302 0·599340354 0·599421949 0·599416094 0·599409488

Table 4. The Neville table for estimating the radius of convergence tc for
j = 1, γ = 5/3 and δ = 2.

n Linear Quadratic Cubic Quartic Quintic

37 0·472675036 0·472699141 0·472698783 0·472698760 0·472698749

38 0·472676303 0·472699112 0·472698780 0·472698758 0·472698749

39 0·472677471 0·472699087 0·472698778 0·472698757 0·472698749

40 0·472678551 0·472699063 0·472698776 0·472698756 0·472698748

41 0·472679550 0·472699042 0·472698774 0·472698755 0·472698748

Table 5. Values of tc , the time taken by the shock to
collapse, for γ = 7/5, 5/3 and δ = 1, 2.

γ δ tc(Planar) tc(Cylindrical) tc(Spherical)

7/5 1 0·8 0·62560203 0·5522584

7/5 2 0·6311728 0·5562757 0·49695567

5/3 1 0·63322227 0·536922155 0·46570332

5/3 2 0·54694133 0·47269876 0·416159476
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5. Structure of the local singular solution

Guderley [1] conjectured that in the neighbourhood of collapse, the shock location can be
described by an expansion:

R(t) = 1 − X(t) ∼
∑
i=1

Ai

(
1 − t

tc

)αi

. (22)

He computed only the first exponent α1; the remaining exponents and amplitudes were un-
known. Van Dyke and Guttmann [3] successfully computed all the real exponents and the
corresponding amplitudes for an ideal gas using the method of Baker and Hunter [11]; the lat-
ter have devised a technique for detecting confluent singularities when an accurate estimate of
the location of the dominant singularity is available. This involves the creation of an auxiliary
function from the given function. In (22), we substitute the value of tc obtained in the previous
section and introduce an auxiliary variable τ given by t = tc(1 − exp(−τ)); thereafter, we
multiply the nth term by n! and sum over n to obtain the series for an auxiliary function

R(τ ) =
∑
i=1

Ai/(1 + αiτ), (23)

which has poles at −1/αi and corresponding residues Ai/αi , and is of the form of an [(N −
1)/N] Pade approximant [12, Chapter 1]. This is, indeed, a rational function approximant to
a Taylor series expansion given as the ratio of two polynomials, the coefficients of which are
constructed from the series solution. As we have a series with approximately 40 terms, N can
be varied up to 20 at the most. Varying N from 3 to 20, we get the successive [(N −1)/N] ap-
proximants to the auxiliary function, R(τ ). Splitting these approximants into partial fractions,
we get the values of αi and Ai which constitute a list of admissible similarity exponents and
the corresponding amplitudes recovered in the neighbourhood of collapse. This entire work of
transforming the function R(t) to an auxiliary function R(τ ), forming the Pade approximants,
and then splitting the same into partial fractions has been carried out using Mathematica. The
exponents and amplitudes obtained from the poles and residues of these fractions are listed in
Table 6.

6. Concluding Remarks

A problem involvong a converging shock wave has been formulated with a gas of varying
density obeying a power law. The entire flow field extending from the piston to the center/axis
of collapse, where Guderley’s local analysis cannot provide the solution, is analysed using the
perturbation approach proposed by Van Dyke and Guttmann [3]. The global solution confirms
Guderley’s local self-similar solution near the center/axis and yields refined values of the
similarity parameter along with higher order terms in Guderley’s expansion; the values of the
first three similarity exponents and amplitudes in Guderley’s local expansion are extracted
from the coefficients in our perturbative series, and are listed in Table 6. The values of the
leading exponent α1 for different values of j, γ and δ are given in Table 7; these compare well
with the numerical results obtained in Refs. [4], [5] and [13]. The fact that α1 is always less
than unity shows that the shock is continuously accelerated; in fact the shock speed becomes
unbounded as t → tc, but less rapidly than (t − tc)

−1. We notice that an increase in any of
the parameters j, γ or δ causes the leading similarity exponent α1 to decrease and conse-
quently brings about an increase in the shock acceleration as it approaches the center/axis.
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Table 6. Similarity exponents and corresponding amplitudes for different
j, γ and δ.

j γ δ Exponents Amplitudes

0 7/5 1 α1 = 0·831852044124997 A1 = 0·974097989030041

α2 = 2·204296521077008 A2 = 0·02951627083958669

α3 = 3·179268335989584 A3 = −0·00346439212730139

0 7/5 2 α1 = 0·7176988659369873 A1 = 0·97452123056781

α2 = 2·388425655181384 A2 = 0·0277749479851510

α3 = 3·582478345092601 A3 = −0·000995715219429995

0 5/3 1 α1 = 0·817428265131909 A1 = 0·977893654931644

α2 = 2·128657585030641 A2 = 0·0241564736779048

α3 = 3·158336713747037 A3 = −0·002024200002912269

0 5/3 2 α1 = 0·6965814555233822 A1 = 0·978099342412351

α2 = 2·261889612239047 A2 = 0·02330367149114996

α3 = 3·22910421177461 A3 = 0·004632978257337105

1 7/5 1 α1 = 0·7149227872587102 A1 = 0·976215584035954

α2 = 2·205325727678336 A2 = 0·02301857273630043

α3 = 3·770302627342177 A3 = 0·00834259484380019

1 7/5 2 α1 = 0·6283413666826567 A1 = 0·977445447015596

α2 = 2·366114588765389 A2 = 0·0222480063136541

1 5/3 1 α1 = 0·6883735502859699 A1 = 0·980579710047778

α2 = 2·049627009839459 A2 = 0·01824624027483898

α3 = 3·319517895915208 A3 = 0·003515148017073944

1 5/3 2 α1 = 0·5994460186251939 A1 = 0·980754849682343

α2 = 2·167020972574668 A2 = 0·01861425008290034

2 7/5 1 α1 = 0·6266778045095402 A1 = 0·978749222955747

α2 = 2·191031361851746 A2 = 0·0170757777249875

α3 = 2·334752854004494 A3 = 0·001898006877797207

2 7/5 2 α1 = 0·5588081764878352 A1 = 0·97995544166925

α2 = 2·344712136174166 A2 = 0·01839683827762583

2 5/3 1 α1 = 0·5946705012670877 A1 = 0·983187083610092

α2 = 1·988678822962598 A2 = 0·0143883512470273

α3 = 3·351885536569706 A3 = 0·0290805285641347

2 5/3 2 α1 = 0·5263859655114837 A1 = 0·983095597303395

α2 = 2·093892914192529 A2 = 0·01530040019401947
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Figure 1. (a-d): Velocity profiles for planar (P), cylindrical (C) and spherical (S) geometries. The solid and dashed
lines indicate the flow profiles at the time of collapse t = tc, and just before collapse t = tbc, respectively.
(a) determines the flow profiles for γ = 7/5, δ = 1; for the planar flow P: tc = 0·8, tbc = 0·79; for the
cylindrical flow C: tc = 0·6256, tbc = 0·61; for the spherical flow S: tc = 0·55225, tbc = 0·54; (b) represents
the velocity profiles for γ = 5/3, δ = 2; for P: tc = 0·6332, tbc = 0·61; for C: tc = 0·5369, tbc = 0·51; for S:
tc = 0·4657, tbc = 0·44; (c-d) represent the velocity profiles for γ = 5/3, δ = 2; for P: tc = 0·5469, tbc = 0·52;
for S: tc = 0·4161, tbc = 0·39.

Figure 2. (a,b): Density profiles for the three symmetries. The solid and dashed lines indicate the density at tc
and tbc respectively. (a) represents the density profiles for γ = 7/5, δ = 1; for P: tc = 0·8, tbc = 0·79; for C:
tc = 0·6256, tbc = 0·61; (b) gives the density profiles for γ = 5/3, δ = 1; for P: tc = 0·6332, tbc = 0·61; for C:
tc = 0·5369, tbc = 0·51; for S: tc = 0·4657, tbc = 0·44.
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Figure 3. (a-d): Pressure profiles for the three symmetries. (a) represents the flow profiles for γ = 7/5, δ = 1;
for P:tc = 0·8, tbc = 0·79; for C: tc = 0·6256, tbc = 0·61; for S: tc = 0·55225, tbc = 0·54; (b) denotes the
flow profiles for γ = 5/3, δ = 1; for P: tc = 0·6332, tbc = 0·61; for C: tc = 0·5369, tbc = 0·51; for S:
tc = 0·4657, tbc = 0·44; (c-d) represent the pressure profiles for γ = 7/5, δ = 2; for P: tc = 0·6311, tbc = 0·62;
for C: tc = 0·5562, tbc = 0·54; for S: tc = 0·4969, tbc = 0·48.

Figure 4. (a): C1 and S1 represent the shock trajectories for cylindrical and spherical flow fields for
γ = 7/5, δ = 1; C2 and S2 represent the cylindrical and spherical shock paths for γ = 5/3, δ = 1. (b): C3
and S3 denote the cylindrical and spherical shock profiles for γ = 7/5, δ = 2 while C4 and S4 denote the
cylindrical and spherical shock profiles for γ = 5/3, δ = 2.

The flow variables are computed to elucidate the effects of varying the adiabatic coefficient,
the wavefront curvature and the density stratification. Figures 1(a–d) and 2(a–b) show that the
velocity decreases monotonically behind the shock as we move towards the piston, whereas
the density exhibits an increasing trend in the region behind the shock; this is on account
of geometrical convergence or area contraction of the shock wave which causes velocity to
decrease and density to increase. It is found that an increase in γ or δ results in an increase
in the particle velocity and a decrease in the density (see Figures 1 and 2). It may be noticed
that for spherically symmetric flows the velocity distribution becomes steeper as compared to
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Table 7. Comparison of the computed value of the dominant similarity exponent α1 with those
obtained by the other authors.

j γ δ Computed α1 Sharma and Radha [13] Hafner [4] Sakurai [5]

0 7/5 1 0·831852044124997 0·831848815918 0·831851098197583 0·831849867

0 7/5 2 0·7176988659369873 0·717696691895 0·717699788037417 0·717699915

0 5/3 1 0·817428265131909 0·817425122070 0·817427518983985 0·817427555

0 5/3 2 0·6965814555233822 0·696577789307 0·696581002711928 0·696582565

1 7/5 1 0·7149227872587102 0·7147654371895

1 7/5 2 0·6283413666826567 0·6283397583008 0·628341718080 387

1 5/3 1 0·6883735502859699 0·6883719325065

1 5/3 2 0·5994460186251939 0·5994441223144 0·599446006340436

2 7/5 1 0·6266778045095402 0·626676673889

2 7/5 2 0·5588081764878352 0·558805505371 0·558808169990111

2 5/3 1 0·5946705012670877 0·594669113159

2 5/3 2 0·5263859655114837 0·526383563232 0·526385934682883

the planar flows when δ = 2. A more pronounced indication of this behaviour can be seen as
the front approaches the center/axis (see Figure 1(d)); indeed the amplification mechanism of
flow convergence is stronger for the spherical case than for a planar or cylindrical geometry.
The results indicate that the gas pressure remains bounded in the region behind the shock;
indeed, it is stationary in most of the region except in the vicinity of the front where it attains
a maximum. This is due to the fact that the gas which is highly compressed by the shock,
cools down in the region behind the shock, and the density ahead of the front decreases at the
same rate at which the square of the front velocity increases. It is observed that an increase
in γ or δ causes the gas pressure to increase in the region behind the shock (see Figures 3(a–
d)); indeed the stationary values of the gas pressure become larger as the front approaches
the center/axis. Figures 4(a–b) indicate that in the initial stage, in the neighbourhood of the
piston, spherical and cylindrical shock trajectories coincide, indicating that the geometrical
convergence effects are small initially at large radii; in fact the shocks gradually accelerate
in the intermediate region and then rapidly do so near the centre of symmetry as a result of
adiabatic compression of the shocked state due to flow area convergence.
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